If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+4x=650
We move all terms to the left:
4.9x^2+4x-(650)=0
a = 4.9; b = 4; c = -650;
Δ = b2-4ac
Δ = 42-4·4.9·(-650)
Δ = 12756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12756}=\sqrt{4*3189}=\sqrt{4}*\sqrt{3189}=2\sqrt{3189}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{3189}}{2*4.9}=\frac{-4-2\sqrt{3189}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{3189}}{2*4.9}=\frac{-4+2\sqrt{3189}}{9.8} $
| 2*(-1)+x=0 | | 2x²-6x-56=0 | | 50x-22*12.5=10 | | 7x-9x2=5x-2 | | 21y=4-6y | | 22x-2=3(x-1)-5(6-2x) | | -4x+0=-3 | | (6+6n)5=30 | | 2x-8=-6x-8+8x | | 8u-5u-7=20 | | 2x+1/2-3=0 | | 5n-3n-1=15 | | 12+x÷8=13 | | 2(x-1)=x+X+3 | | 2x÷3-1=8 | | -x3-5=10 | | 7x+3x=4x+2 | | 36x^2-36x-280=0 | | 2(4w+1)=-9/4 | | 8=24x-(4x+7) | | 4=4(n-2)+2n | | x/2+2/3=1/5 | | 5+4n=65 | | -16(x=6)=4(x-14) | | a^2+3a=1 | | X-2y-3=3 | | -5x^2-5x-156=0 | | 5000=(.07x)+x | | 4m-5=3-3m | | 5x-(3x-10)=-x | | 10b-9b=21 | | 5k-3=9-3k |